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Abstract

Unenhanced imagery recorded by the multi-spectral scanner (MSS)
of the NASA Earth Resources Technology Satellite (ERTS-1) was analyzed
to determine how satellite imagery may be applied to specific coastal
engineering problems. The study area of interest is a segment of the
North Carolina coast comprising Wrightsville Beach, Masonboro Inlet,
Masonboro Beach, Carolina Beach Inlet and Carolina Beach, which are areas
of on-going research by CERC. Analysis was supplemented by underflight
imagery supplied by NASA and ground truth data.

A number of significant coastal features are visible in the ERTS-1
imagery. Among these are plumes of suspended sediment emerging from
inlets, changes in water coloration possibly due to effects of temperature
change, and inlet bars and cape bars. In addition, morphological changes
in selected coastal land features were determined by direct comparison
of ERTS-1 films obtained about one year apart.

Limited water depth penetration is afforded by examining the lower
MSS spectral bands. Maximum penetration can be expected to measure in
tens of feet, depending on the physical characteristics of ocean water.
Although not adequate if deeper penetration is desired, this capability
is adequate for exposure of backshore and nearshore underwater features.

Image resolution capability is sufficient for observation of
gross coastal features and processes but may not be adequate for
viewing smaller features such as wave patterns, morphological features
on beaches, and many engineering structures.
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Introduction

Imagery obtained by the Earth Resources Technology Satellite

(ERTS-1) has been shown to be highly useful in many varied'scientific

and engineering applications. Evidence of this has been demonstrated

by the numerous technical conferences and symposiums sponsored

specifically to exploit ERTS-1 imagery and the increasing number of

publications appearing in periodicals and newspapers.

Most publications describing the usefulness of satellite imagery

have depended on the use of highly sophisticated and expensive

equipment and complex computer analysis to derive the "significant"

results published. One of the intentions of the original CERC

proposal to NASA was to determine the possible use of satellite imagery

in coastal engineering applications only with the aid of conventional

photographic processes and equipment. It is anticipated that results

of this report will be beneficial to individuals and small organizations

lacking the expertise and/or financial capability to utilize sophisti-

cated equipment and analysis techniques in order to derive useful

information from ERTS-1 imagery.

The results described in this report have been documented through

the use of ordinary photographic processes and access to libraries

and information available to the general public. The basic data was

the ERTS-1 imagery furnished by the NASA Goddard Space Flight Center.

This imagery was supplemented by underflight imagery furnished by the

NASA Ames Research Center and the NASA facility at Wallops Island,

Virginia.
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Primarily, the objective of this study is to determine if the

status of the littoral regime for a portion of a coastline may be

established through the use of remote sensing imagery. Secondarily,

can variations of the coastal features, i.e., barrier islands and

tidal inlets, be detected and measured by use of remote sensing

imagery. It is also of interest to investigate the exchange of

waters between the ocean and tidal areas with the ultimate goal of

measuring this exchange and its contribution to the littoral budget.

Study Area

In order to have faith in the results of the imagery analysis,

it was decided to choose a study area having plentiful ground truth

data, preferably a coastal segment along which are sites of on-going

research projects of CERC. Accordingly, a segment of the North

Carolina coast including the following sites was chosen:

1. Wrightsville Beach

2. Masonboro Inlet

3. Masonboro Beach

4. Carolina Beach Inlet and

5. Carolina Beach

These sites are shown on the location map, figure 1.

In addition to being sites of active research projects of CERC,

sites 1i, 2, and 5 are either federally sponsored beach erosion control

and hurricane protection projects or federally maintained navigation

projects.
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Studies presently underway at Carolina Beach Inlet are being

pursued to establish the feasibility of controlling a navigation

channel through an inlet by dredging a deposition basin in the

throat of the inlet without constructing permanent navigation

structures such as breakwaters or jetties. The study of Masonboro

Inlet seeks to substantiate the feasibility of a new concept

in jetty design, the weir jetty, involving the provision of a

deposition area in the lee of the jetty for the storage of naturally

moved littoral materials and periodic bypassing of these materials by

ordinary dredging equipment while providing protection for navigation.

Both Wrightsville and Carolina Beaches are federally sponsored

hurricane and shore protection projects constructed by the U. S.

Army Corps of Engineers. Data collected on these beaches arq being

analyzed to determine the budget of the littoral materials of these

areas and to monitor the condition'of the Corps-built projects.

Masonboro Beach, at present an undeveloped barrier island between

the two inlets, is being studied because of its integral relationship

to the barrier island/tidal inlet complex and its contribution to the

littoral budget.

The results of this report will provide additional information for

C e 1C' larer enFFrt n apnnlyi, n r nmote sensng, tnques,.., t,

understanding coastal engineering problems. Moreover, it is

anticipated that the results presented here will provide significant

input to the concurrent CERC projects listed above.
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Characteristics of Imagery

Imagery used in this study consisted of ERTS-1 multi-spectral

scanner (MSS) imagery in four discrete spectral bands ranging in

wavelength from 0.5 microns (green) to 1.1 microns (infrared) and

conventional aerial photography taken on black and white, color

and infrared color film.

Specific information concerning the ERTS-1 satellite and details

of collection, processing and dissemination of imagery are contained

in the Data Users Handbook (7); however for the purpose of this paper

it is important to list the radiation wavelengths in order to understand

what is actually portrayed in the imagery of the MSS and of the

conventional photography. Table 1 presents wave length ranges for

each MSS spectral band (band numbers fixed by NASA) and for the'

conventional photography used in this study. Optical filters were

used in the conventional photography in order to match the spectral

bands of the MSS.

Table 1

ERTS-1 MSS AND AERIAL PHOTOGRAPHY SPECTRAL
RELAT IONSH IP S

WAVE LENGTH RANGE
SENSOR IN MICRONS

ERTS Band 4 0.5-0.6
5 0.6-0.7
6 0.7-0.8
7 0.8-1.1

.Ames Research Center Camera 1 .475-.575
2 .58-.68
3 .69-.76
4 .51-.70
5 .51-.90*

*Color IR film roughly comparable to a composite photo of SS bands 4, 5, and 7.
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Of particular importance in this study is the water penetration capability

of MSS imagery. Because light attenuation by water is related to light

wavelength, each spectral band provides a different degree of water

penetration. Table 2 shows total light attenuation coefficients in

clear water for wavelength of peak sensitivity of each MSS spectral band (8).

Table 2

LIGHT ATTENUATION COEFFICIENTS IN CLEAR WATER

MSS BAND WAVELENGTH OF PEAK SENSITIVITY (MICRONS) ATTENUATION COEFFICIENT

4 0.54 0.04/m
5 0.64 0.20/m
6. 0.73 1.00/m
7 0.82 2.00/m

Thus for clear water, penetration increases as band numbers decrease.

Using this data, examination of imagery can proceed by making use

of the fact that underwater features can be detected and properly

identified. Magoon et al (6) have pointed out the utility of examining

all four MSS bands, simultaneously and individually, and in conjunction

with other existing data.

Imagery Available For Study

Table 3 presents imagery identification, dates and times of

obtention for both ERTS-1 and underflight coverage.
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TABLE 3

DATES AND TIMES OF ERTS AND UNDERFLIGHT
OBSERVATIONS OF STUDY AREA

A. ERTS-1

FRAME NO. DATE TIME (EST)

E-1007-15142 30 July 72 1014
E-1080-15203 11 October 72 1021
E-1115-15152 15 November 72 1015
E-1134-15211 4 December 72 1021
E-1170-15205 9 January 73 1021
E-1188-15210 27 January 73 1021
E-1205-15153 13 February 73 1016
E-1242-15213 22 March 73 1022
E-1314-15210 2 June 73 1021

B. UNDERFLIGHTS

FLIGHT NO. DATE APPROXIMATE TIME (EST)

72-116 19 July 72 0842
72-144 19 August 72 1044
72-167 22 September 72 1226
W-179-FLT1 2 November 72 1025
73-013A 30 January 73 0945
W-187-FLT1 13 February 73 1025
73-062 28 April 73 1200
W-195 11 May 73 1140
W-222 15 June 73 1220

General Comments Concerning Imagery

In examining the ERTS-1 imagery, a number of basic observations

were made and conclusions reached that should be stated. These statements

are referenced to those images noted in table 3. However it is felt that

the broad range of conditions encountered are representative of ERTS-1

imagery in general and that the statements have applicability to other

studies and investigations using this imagery.

Nominal resolving power of the multi-spectral scanner is approximately
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250. feet on the ground (7). As a result, smaller man-made structures

such as roads and buildings are not visible. This resolving capability

however is suitable for observation of gross coastal features and processes.

In selected cases distortion of the shoreline was apparent where

image scan lines intersect at nearly right angles to the shoreline,

imparting a serrated appearance to the shore. This appearance could be

interpreted erroneously as a natural cuspate shore by those unfamiliar

with the detailed procedure used to obtain and record the imagery.

Band 7 shows the greatest tonal contrast between land and water

owing to the fact that water penetration is least in this band (comparable

to black and white infrared photography). Contrast, in general, decreases

in moving from band 7 to band 4. In some band 4 images it was difficult

to distinguish land from water in backshore areas. Additionally, even

though water depth penetration is greatest in band 4, poor contrast made

it difficult to distinguish shoal areas from land masses. In most of the

images analyzed, shoal areas were most.apparent in band 5.

Clouds, where present, caused problems in distinguishing features

on the ground and in the water. In most of the images cloud cover was

light. Only one filmset was so heavily covered that analysis was

impossible (27 January, 1973, ERTS 1188-15210). In a few isolated cases,

care had to be exercised in distinguishing between shoals and cloud

shadows.

Figure 2 presents contact prints* of the four spectral bands showing

the study area (11 October 1972, ERTS 1080-15203). Approximate scale

*It should be noted that in this report all ERTS-1 images presented are

either contact or enlargement photographs of positive imagery and are
therefore negative prints. As a result land areas appear dark and water
areas lighter.
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fig. 8(b) - ERTS 1314-15210. Enlargement of study
area recorded on 2 June 1973.
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fig. 9(a) - NASA/ARC Flight 72-116. Underflight
mosaic of study area photographed on
19 July 1972. Altitude: 65,000 ft. MSL.

fig. 9(b) - NASA/Wallops Flight W-222. Underflight
mosaic of study area photographed on 15
June 1973. Altitude: 9,500 ft. MSL.
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fig. 2 - ERTS 1080-15203. Study
area.
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fig. 2 (cont'd)
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is 1:1,000,000. The prominent cape is Cape Fear. Photographic coverage

of the shoreline extends from just south of Little River Inlet

in South Carolina north to Bear Inlet, North Carolina. Spectral bands

6 and 7 clearly show the Cape Fear River and its tributaries, one

tributary extending all the way to the northwest corner of the photograph.

Also clearly delineated in these bands are the barrier islands extending

north and south of Cape Fear. Inlets separating the barrier islands

are seen as well.

Scan line distortion along the barrier islands is apparent in

all four spectral bands (note for example Masonboro Beach).

In bands 4 and 5, contrast between land and water decreases and

shoaling areas at the mouths of inlets become more apparent. These

two bands illustrate the problem of contrast versus depth penetration

covered above. The result was that shoals were studied primarily

by using band 5. Sediment plumes also are visible in bands 4 and 5 and

are seen at the.mouth of the Cape Fear River and migrating along the

seaward edges of the barrier islands both north and south of Cape Fear.

Figure 2 illustrates the problem of cloud cover. Cape Fear is

known to have a southeast-trending shoal off its tip visible in the

lower spectral bands (shown later). Cloud cover in the southeast

corner of -fr 2 ffect9 iely nhbsrures any evidence of shoaline off

Cape Fear.

Features Noted in tneStudy Area

A number of selected coastal features within the study area were

noted during analysis of the ERTS-1 images. Interpretation of these features

is important to coastal engineering because they provide vital clues to
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the littoral budget and behavior of shorelines and inlets. This section

treats each feature separately with accompanying ERTS-1 photographs and

pertinent ground truth data.

Sediment Plumes. Because they act as tracers, bodies of suspended sediment

as seen in aerial and space photographs have long been used by coastal

engineers in interpreting current structures and estuarine flushing patterns.

These sediment bodies, or plumes, are seen readily in spectral bands

4 and 5. With ERTS-1 imagery it is possible to observe sediment

plumes of areal extent measuring in thousands of square miles.

Figure 3 shows bands 5, 6 and 7 (band 4 not available) of the

study area observed on 4 December 1972 (ERTS 1134-15211). Band 5 reveals

sediment plumes at the mouths of Carolina Beach and Masonboro Inlets

(refer to figure 1 for precise location). The visible portion of the plume

at Carolina Beach Inlet is almost semicircular with its longest diameter

against the shoreline and measuring approximately 2.8 lautical miles.

Maximum seaward extent of the plume is approximately 2.1 nautical

miles. Masonboro Inlet has a smaller, more linear plume extending seaward

about 1.5 nautical miles and trending toward the southeast.

Tide data (table 4), obtained from a station at Masonboro Inlet,

indicate ebb tide occurred at the time the ERTS-1 observation was made.

TidUe level was 1.9 feet above u .mea. low water (slackW Watrs wre O.3 and 0.J

feet above MLW respectively). Daily weather data obtained from the National

Weather Service Office, Wilmington, North Carolina (5), for 4 December

1972 and the preceding three days show zero precipitation. The

sediment plumes then do not reflect abnormal quantities of runoff due to

heavy precipitation but most likely are normal discharges associated

with ebb tide.
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Band 4 (not available)

Band 5

fig. 3 - ERTS 1134-15211. Sedi-
ment plumes and Cape
Fear bar.
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TABLE 4

TIDE DATA - MASONBORO INLET

(from Tide Tables)

A. ERTS-I

DATE TIME (EST) TIDE (FT) RANGE (FT)* CYCLE

30 July 72 1014 4.1 (-)0.4-4.1 flood

11 Oct 72 1021 4.1 4.2-1.0 ebb

15 Nov 72 1015 1.5 0.9-3.7 flood

4 Dec 72 1021 1.9 4.3-0.3 ebb

9 Jan 73 1021 3.6 (-)0.1-3.6 flood

27 Jan 73 1021 1.1 0.7-2.4 flood

13 Feb 73 1016 0.0 4.0-0.0 ebb

22 Mar 73 1022 3.1 3.2-(-)0.1 ebb

2 Jun 73 1021 2.7 3.6-(-)1.0 ebb

B. UNDERFLIGHTS

DATE TIME (EST) TIDE (FT) RANGE (FT)* CYCLE

19 Jul 72 0842 0.6 0.5-3.4 flood

19 Aug 72 1044 1.2 0.8-3.7 flood

22 Sept 72 1226 0.0 4.7-(-)0.1 ebb

2 Nov 72 1025 0.7 4.3-0.5 ebb

30 Jan 73 0945 0.8 3.4-0.4 ibb

13 Feb.73 1025 0.0 4.0-0.0 ebb

28 Apr 73 1200 1.1 0.2-3.6 flood

11 May 73 1140 1.1 0.0-3.9 flood

15 Jun 73 1220 0.1 2.9-(-)0.1 ebb

* Ranges denote maximum or minimum tidal height preceding and following tide
levels given.
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The plume off Carolina Beach Inlet is displaced slightly toward

the south indicating the presence of a southbound current. The

near-semicircular configuration suggests that this current, though

present, was relatively weak in the vicinity of the inlet. There is no

ground truth data available to substantiate the existence of a

predominant southward littoral drift at the time of observation that may

be a contributing factor to this movement. Wave gage data (table 5)

obtained at Wrightsville Beach for 0100, 0700, 1300 and 1900 hours (EST)

on 4 December 1972 show lower significant wave heights and longer wave

periods than the average for the month of December 1972. Wave energy

therefore was lower than average for those times. Wave observation data

obtained by volunteer observers at Wrightsville Beach under the Beach

Evaluation Program (4) managed by CERC show that wave crests ,for the most

part approached parallel to shore during that day. The data from the

wave gage and observers combine to support the view that any longshore

current generated off Wrightsville Beach or nearby vicinity must have

been relatively weak.

The plume off Carolina Beach Inlet is much larger in areal

extent than the one off Masonboro Inlet. This phenomenon can be explained

in terms of the tidal hydraulics of the area. A detailed analysis of the

tidal flow through Carolina Beach Inlet was made in connection with a

study investigating erosion at Carolina Beach (12). This study revealed

that tidal flow through the inlet is controlled not only by the ocean tide

fluctuations but also by those of the Cape Fear River through Snow's Cut.

High water in the ocean occurs about one hour before high water in the

river, and low water occurs about one and one half hours before low

water in the river. The result of this combined tidal action is that

16<
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TABLE 5

SIGNIFICANT WAVE HEIGHTS AND PERIODS

(obtained from Wave Gage Data, CERC)

0100 0700 1300 1900
DATE n H(ft.) T(sec.) H(ft.) T(sec.) H(ft.) T(sec.) H(ft.) T(sec.)

*19 Jul 72 2.0 7.4 2.1 8.8 2.2 8.8 2.1 8.0
18 Jul 72 2.0 9.7 1.7: 8.8 2.1 8.8 2.0 8.8
17 Jul 72 2.3 9.7 2.0 8.8 2.2 8.0 2.1 8.0
July Avg. 2.4 7.3 2.2 7.8 2.3 7.8 2.3 7.6

*19 Aug 72 1.5 7.4 1.4 8.0 1.7 8.8 1.4 7.4
18 Aug 72 2.1 9.7 -- --- 1.8 8.8 1.7 8.0
17 Aug 72 2.4 5.0 1.9 5.0 2.0 10.8 2.0 9.7
August Avg. 2.4 7.3 2.6 6.1 2.6 7.4 2.7 6.8

*2 Nov 72 1.8 7.4 1.8 10.8 1.8 8.8 1.7 10.8
1 Nov 72 2.9 4.0 2.2 4.3 2.2 8.8 1.9 8.8
31 Oct 72 3.0 5.0 2.8 4.0 3.4 4.8 2.6 5.3
October Avg. 2.5 6.4 2.6 5.2 3.2 5.8 2.6 5.9

*15 Nov 72 2.9 8.0 1.9 9.7 2.4 8.8 2.5 8.8
14 Nov 72 3.3 5.0 5.6 6.9 --- --- ---
13 Nov 72 3.4 4.0 3.0 5.0 3.0 4.8 2.5 4.3
November Avg. 3.2 7.8 3.1 7.7 3.0 7.4 3.1 8.5

*4 Dec 72 1.2 8.8 1.2 8.8 1.4 8.0 1.7 8.8
3 Dec 72 1.4 8.8 1.5 8.8 1.6 8.8 1.7 8.0
2 Dec 72 1.9 6.9 1.7 9.7 1.6 9.7 2.0 3.0
December Avg. 2.7 7.8 2.8 7.6 2.8 7.7 3.0 7.1

*9 Jan 73 3.1 8.0 2.7 8.8 --- --- 2.0 9.7
8 Jan 73 4.6 5.0 6.8 7.4 5.3 8.0 4.6 8.0
7 Jan 73 2.0 4.1 3.5 5.6 3.3 5.6 3.8 5.3
January Avg. 2.8 7.6 3.2 7.5 3.0 7.8 2.8 8.1

* - Date of Flight, either ERTS or underflight



slack water before ebb at the inlet occurs one hour after low water in

the ocean and slack water before flood occurs one and one half hours

after ocean high water. Translated in terms of time on 4 December 1972,

slack water times (EST) for the ocean, Carolina Beach Inlet, and the

Cape Fear River are listed as follows:

OCEAN RIVER INLET

Time of high: 0829 0929 Slack water before flood: 0959
Time of low: 1551 1721 Slack water before ebb: 1651

Based on the information presented above, it is clear that at 1021 EST,

the time of the ERTS-1 image shown in figure 3, Carolina Beach Inlet

was at the beginning of the flood cycle and not ebb as indicated by

table 4 which gives tidal data from Masonboro Inlet. What is observed

in the ERTS-1 photograph therefore is the plume at Carolina Beach Inlet

that resulted from the preceding ebb cycle and what is seen at

Masonboro Inlet is a partially developed.plume about two hours after

the beginning of the ebb cycle at that inlet.

"Density" Mass: A striking color (or gray tone) change in the ocean water

off the North Carolina coast is visible in all four bands of the ERTS-1

imagery recorded on 2 June 1973 (ERTS 1314-15210, figure 4). The water

adjacent to the coast is of a lighter color (darker in the negative

print) and ppPerg to be In the form of a linear mass irregular in outline

and running roughly parallel to shore. The mass extends from the southern

frame border north approximately to Rich Inlet where it pinches out and

picks up again at Old Topsail Inlet. Approximate width of the mass is 7

miles from shore seaward. Examination of the adjacent frame to the south

(ERTS 1314-15213, not shown) reveals that the mass is bordered on the

south by the shoals off Cape Fear (discussed in a later section). The

11



Band 4

fig. 4 - ERTS 1314-15210. Gray
tone change in ocean water.
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fig. 4 (cont'd)
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mass itself does not contain any visible patterns that would suggest

a result of tidal outflow. Its irregular outline suggests that

mixing with adjacent ocean water is in progress. The fact that the

mass is visible in all four MSS bands indicates that the feature has

some depth to it.

Local climatological data for Wilmington (5) reveals zero precipitation

for the day of the ERTS-1 observation and the preceding two days.

Weather observations made at three-hour intervals on 2 June 1973,

starting at 0100 EST, show that air temperature rose from 59 degrees F

at 0400 EST, the lowest recorded temperature for that month, to 82

degrees F at 1000, the highest recorded temperature for the day. In

the interval of six hours, air temperature rose 23 degrees F. Recorded

wind speeds for 0100, 0400, and 0700 EST were zero, but the wind

picked up to 8 knots by 1000 hours.

The change in color most likely is caused.by a difference in density

which may result from changes in salinity, quantity and type of suspended

matter (as in the sediment plumes covered above), concentrations

of marine life and nutrients, or any combination of these. Often changes

such as these are observed between water masses of differing temperatures.

Figure 5 presents a map of the Carolinas' coast showing sea surface

isotherms recorded by an airborne radiation thermometer on 24 and 25

June 1973, the closest days to the ERTS-1 observation for which this data

is available (3). Dotted portions along some of the isotherms represent

extrapolations made by the investigators. A trough of cooler water is

seen to originate off the coast north of Cape Lookout and extend south

as far as Cape Fear as evidenced by the linearity of the 25
0 C isotherm

and a small entrapped 24*C isotherm. Just off Cape Fear

12
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is a small 270C isotherm. It is reasonable to infer from the chart

that a body gf warmer water may be trapped by the 250C isotherm between

Capes Lookout and Fear. As previously noted the change in water

temperature may be a factor in causing a tonal change in the photographs.

That the darker tone represents warmer water is borne out by examination

of the next ERTS-l frame to the south (ERTS 1314-15213, not shown).

The same tonal variation is apparent toward the southeast roughly

coinciding with the Gulf Stream. Examination of figure 4 shows that

the outline of the "density" mass roughly coincides with the isothermal

pattern. Although the temperature recordings were made on different

days from the ERTS-1 recording, it is not unreasonable to assume that

isothermal variations on the sea surface tend to follow predictable

patterns during a given season along a particular coastal segment.

Inlet Bars: Bars generally are found at the landward and seaward ends

of inlet channels. These bars usually appear as lobate or delta-shaped

sand bodies, originating at the channel's ends. These bars are formed

by deposition of sediment transported alongshore to the inlet and

carried through the inlet by tidal flow. During flood tide the

materials are carried through the inlet and deposited on what is often

referred to as the inner bar. During ebb tide, some of the materials

deposited in the inner complex are transported back through the inlet

to an area frequently called the ocean bar. Ebb and flood tide channels

form in both the ocean and inner bar formations, and both the bars and

channels generally migrate. Geometry and migration of these featrues

are related to the rate of littoral material movement to and within

the inlet and the prevailing tidal currents.

Inlets are important coastal features from the standpoint of private
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and commercial water traffic because often they are the only means of

access from mainland areas to the ocean. Consequently bar migrations

and shoaling rates must be monitored closely by coastal engineers

in order that appropriate maintenance dredging measures can be

planned to maintain the inlet channels in navigable condition.

Inlet bars are visible around Carolina Beach and Masonboro Inlets

in ERTS 1007-15142 (30 July 1972) in figure 6. These bars are

barely visible in band 6 but are most striking in bands 4 and 5.

Southbound littoral drift at Masonboro Inlet is controlled by a weir

jetty at the mouth of the inlet on the north side with the result that

the ocean bar is of a different geometry and position from the one at

Carolina Beach Inlet. The ocean bar at Masonboro Inlet is roughly

linear in form and is displaced toward the south of the inlet, channel

which is bordered on the north side by the jetty. The bar trends

approximately parallel to the channel and jetty, toward the southeast,

and is separated from Masonboro Beach by what is :apparently a secondary

tidal channel.

Capes: Capes Fear and Lookout each have a southeast-trending bar extending

from the tip of each cape. These bars are seen best in spectral

bands 4 and 5. The bar off Cape Lookout is the longer of the two,

measuring about four 41- omared to ^on mile for the one off Cape

Fear. Figure 3 shows this feature off Cape Fear, and the extension of

Cape Lookout is visible in figure 7.

Historical records have shown that these two capes are the sites of

shifting current directions (9). Sediment transported toward the tip of

each cape by longshore currents is deposited in the shoaling areas

as the sediment laden waters reach the tip. Diffraction around the tip
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fig. 6 (cont'd)
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fig. 7 - ERTS 1007-15142. Bar off
Cape Lookout.
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causes waves to lose energy which in turn reduces the sediment carrying

capacity of those waves. Shifts in longshore current direction probably

prevent these shoals from approaching a direction parallel to the

current. The shoals visible in the ERTS-1 imagery are oriented in a

direction that reflects net deposition by shifting currents.

Bumpus (2) points to converging currents as the mechanism for

bar formation off the capes of North Carolina. A southwesterly wind,

the prevailing wind during many months of the year, blows parallel to

the direction of the coast south of Cape Hatteras. This wind will pile

up water on the south side of the capes resulting in an hydraulic current

flowing out over the projecting bars. This current will deflect offshore

any southward current approaching the cape from the north side. The

resulting decrease in current velocity will cause deposition of, the sediment

load, thus providing a source of sediment for the bars.

Morphological Changes In
The Study Area

Coastal land features continually undergo erosion and accretion due

to the constant action of wind, waves and currents. As a result the

morphology of the land is constantly subject to change. Some of these changes

occur over very short periods of time. Inlets through barrier islands

for example have been known to open up in a matter of hours during

storms. Those same inlets have been observed to close up again in

a matter of weeks or months. Whole beaches have eroded away within

a few years due either to natural processes or the influence of man;

other beaches have formed in as much time. In addition to one-time

changes, there are such changes as seasonal variations in beach width,
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steady growth of spits and hooks, and migrations of capes and -inlets.

Because changes to coastal landforms are continuous and often rapid,

maps of these areas tend to become obsolete very quickly. With the

repeated coverage offered by satellite imagery, it is possible to virtually

eliminate the problem of obsolescence inherent in current methods of

mapping. Photographs obtained from satellite im4gery not only provide

an up-to-date supplement to existing maps, but repeated coverage over

relatively shore time intervals also provides a means of monitoring

changes that are occuring in landforms, as long as those changes are

large enough to be resolved by satellite sensors.

This section is devoted to discussion of those morphological changes

that have occured in each of the five coastal features of interest off

the coast of North Carolina: Carolina Beach, Carolina Beach Inlet,

Masonboro Beach, Masonboro Inlet and Wrightsville Beach. Emphasis will

be placed on comparison of what is observed in the ERTS-1 imagery to

low-altitude aerial photography and ground truth data.

General Comments: Figure 8 contains blow-ups of the study area obtained

from the first and last ERTS-1 films analyzed: 30 July 1972 and 2 June 1973.

Band 7 of figure 8 (a) is provided with an overlay of the land-water

interface traced directly from the ERTS-1 photograph in figure 8(b)

allowing direct comparison of shoreline change between Lte two dates.

Comparison of the two ERTS-1 films was done using a Zoom Transfer Scope

(1). Figure 9 shows mosaics of underflight infrared color photographs

provided by NASA showing the study area photographed on 19 July 1972

and 15 June 1973. The following discussion relates directly to figures

8 and 9. The location map in figure 1 should be used to pinpoint

locations of the various features.
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fig. 8(a) - ERTS 1007-15142. Enlargement of studr
area recorded on 30 July 1972.
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Carolina Beach: Comparison of the two underflight mosaics shows that

significant erosion has occured along the arched portion of Carolina

Beach immediately south of Carolina Beach Inlet. This same shoreline

recession is apparent in the ERTS-1 photographs although not as

readily as in figure 9 because of the lower image resolution and

scan line distortion in ERTS-1 imagery. No erosion is apparent along

the beach south of the arched portion. A recent report of the

Wilmington District (12) states that prior to the opening of Carolina

Beach Inlet in 1952, the now-curved portion of Carolina Beach was

continuous with the shoreline to the south and Masonboro Beach to the north.

Subsequent erosion of the segment immediately south of the inlet

has been in progress ever since the opening of the inlet. This

erosion was a natural development resulting from a deficit of littoral

drift from the north, caused by material entrapment in the inlet.

Carolina Beach Inlet: Because of the erosion at Car6lina Beach noted in

the preceding paragraph, Carolina Beach Inlet has a well-defined offset,

the southern ocean edge displaced landward of the projected ocean edge

of Masonboro Beach. The portion of the inlet channel between the barrier

islands is arched northward. These features can be seen clearly in

the ERTS-1 photographs. Comparison with the overlay reveals that the

inle t is migrating nnrthward with a concomitant increase in the

bending of the channel. There does not appear to be any significant

shift in position of the channel's mouth. However, close examination

of the inlet in the underfiight mosaic for 19 July 1972 shows a long

(about 1000 ft.) narrow bar normal to the shore, positioned on the

south side of the inlet and detached from land, and extending seaward

from well within the inlet. This bar is faintly visible in the ERTS-1
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photograph, figure 8(a), as well. Examination of underflight imagery

.subsequent to that photographed on 19 July 1972 shows that the

northern tip of the Carolina Beach extension accreted and filled in

the gap between it and the linear bar, the latter thus forming a sort

of cap to the barrier island's growth. This accretion was accompanied by

apparent erosion on the north side of the channel. This combination

of accretion and erosion accounted for the apparent increase in the

channel arching.

Masonboro Beach: No significant change is observed to have occurred

in the shoreline position of Masonboro Beach either through ERTS-1 or

underflight imagery. Evidently the sand budget along this coastal

segment was relatively stable for the period of time under consideration.

It is probable that much of the sand replenishing at least the southern

part of Masonboro Beach may be derived from the outer bar of Carolina

Beach Inlet during times when the direction of littoral drift is toward

the north. At the north end it is likely that some littoral drift is

moved south from the shoal on the south side of Masonboro Inlet.

Masonboro Inlet: An apparent narrowing of the channel through Masonboro

Inlet has occurred between the time of the two ERTS-1 observations

shown in figure 8. The narrowing occurred as the result of

accretion of the northern tip of Masonboro Beach while the northern

edge of the inlet channel remained stationary. An apparent increase

in size of the shoal on the south side has narrowed the channel along

the above-water portion of the jetty as well. Survey data obtained

in recent years has revealed a steady northward migration of the

channel thalweg since the installation of the weir jetty (see figure

10). Thus, what is observed in the ERTS-1 photography most likely reflects
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a part of this general trend.

Accretion of the northern tip of Masonboro Beach and the increase

in shoaling along the south side of Masonboro Inlet may be due to any

combination of several factors in addition to normal shoaling

associated with inlet tidal flow. One of these factors is northbound

littoral drift. During the fall and winter months, waves approach

the area around Masonboro Inlet more frequently from the northeast

and east, producing southbound littoral currents. During the spring

a transition period is observed during which waves strike the beach

with almost equal frequency from all directions, resulting in frequent

reversals in the direction of littoral transport. During the summer,

waves are more likely to come from the southeast and south and produce

northward drift (11). Although on an annual basis the predominant

direction of wave attack is from the northeast and east, shoaling and

accretion on the south side continue because of the occasional contribution

made by northward moving currents. Moreover, during those times when

the waves are coming from the northeast and east, the shoal is

protected by the weir jetty.

Another factor that may contribute to the shoaling is wave diffraction.

Waves approaching the end of the jetty are diffracted, and the resulting

loss in wave energy causes hatever sediment load there is to e deposite

in the shoaled area. This phenomenon of wave diffraction around the

jetty's end is visible in figure 9(b).

Wrightsville Beach: No discernible change has taken place on

Wrightsville Beach as viewed in the ERTS-1 imagery. Like Masonboro

Beach the amount of sand lost approximately equaled the amount gained

during the time interval under consideration. Some accretion is visible



on the.north side of the Masonboro jetty but, like the rest of the

beach, apparently has remained stable in the time period between

ERTS-1 observations.

Summary and Conclusions

The present study was undertaken in order to determine how

satellite imagery may be applied to specific coastal engineering

problems. The study revolved around unenhanced imagery recorded

by the four spectral channels of the ERTS-1 multi-spectral scanner.

Some of the problems encountered with analysis of the ERTS-1 imagery

were discussed, as were the advantages offered by examination of

each spectral band separately. In addition a number of coasta

features seen in ERTS-1 films including sediment plumes discharged

from inlets, a change in water coloration, inlet bars'and cape bars

were examined and discussed. These features were correlated wtih

ground truth data. Morphological changes in selected coastal land

features were determined by direct comparison of ERTS-1 films obtained

about one year apart. It is expected that the observations

presented in this report will provide significant input into other

coastal studies eing conducted along the coastal segment of North

Carolina under consideration.
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Two characteristics of satellite imagery are considered essential

attributes when applied to coastal engineering problems. The first

characteristic is adequate water depth penetration. It has been

shown that depth of water penetration by light increases as wavelength

decreases. This property of light has allowed examination of

certain underwater features in the lower MSS bands of the ERTS-1

imagery. As can be inferred from the imagery presented in this report,

specifically in reference to the shoals and bars, depth penetration

in MSS channel 4 is estimated to be on the order of tens of feet.

(Actual depth penetration by light of a given wavelength can vary

greatly, depending on the physical characteristics of seawater).

While this penetration capability may not be adequate for deeper

areas, it has been shown to be adequate for making useful qualitative

observations of estuarine and nearshore underwater features.

The other important characteristic is image resolution capable of

discerning small-scale features normally required in coastal studies,

Some of these features include: wave patterns, nearshore current

patterns, morphological features on beaches, and engineering structures

such as groins, seawalls, jetties and breakwaters. At present,

such features must be sufficiently large so as to fall within the

limits of the ERTS-1 sensor's resolving capability. Examination of

the ERTS-1 imagery has shown that, although many of the smaller scale

features of interest in coastal engineering are not visible in the

imagery, many important observations of gross features can be made.
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Most notable of these were the temporal changes in morphology of

tidal inlets and barrier islands observed by direct comparison of

ERTS-1 images. In addition the current resolving capability of the

Multi-Spectral Scanner appears to be adequate for mapping land-water

interfaces with a degree of accuracy that compares favorably with

current methods of mapping.

Recommendations

From the point of view of coastal engineering, improvements

in depth penetration capability and resolving power probably

would lead to wider application of satellite imagery in coastal

studies. While the ERTS-1 imagery has been shown to be useful,

in analyzing gross surface and near-shore features, much of what needs

to be examined in the solution of coastal engineering problems is

found below water level and at scales too small for or bordering

on the present resolving capability of the Multi-Spectral Scanner.

A resolving power of fifty feet or better would be adequate to cover

most structures and features of interest in coastal engineering.

It is anticipated that improvements in optical technology to be

-. ~ .,nn-nn-..na 4 ~.,t,,-. e natl eS +_ -; ;, 1 4r1,,A 4u n~r.0 0 4 -0 A

capability. Greater water penetration capability may be afforded

by the addition of a blue-band channel in future satellite-borne

sensors.
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